سمینار برق مدلهای پدیده کرونا در خطوط انتقال و نحوه ارزیابی تلفات آن در شبکههای واقعی
سمینار برق مدلهای پدیده کرونا در خطوط انتقال و نحوه ارزیابی تلفات آن در شبکههای واقعی
چکیده:
هدف از این تحقیق، بررسی پدیده کرونا در خطوط انتقال انرژی الکتریکی، انواع و تأثیرات آن و نیز مدلهای ارائه شده در مورد این پدیده و ارزیابی تلفات ناشی از آن میباشد.
ابتدا اصول تخلیه الکتریکی، انواع آن – شامل تخلیه های مثبت و منفی در الکترودهای مختلف – و نتایج آزمایشگاهی و نظری مربوطه ارائه میگردد. پس از آن پدیده کرونا در خطوط انتقال معرفی میشود. تأثیر انواع گوناگون هادیها در شدت این پدیده، به کمک نتایج تجربی ملاحظه میشود. سپس تأثیرات محیطی از قبیل آب و هوا، ذرات معلق و… مورد تحلیل قرار میگیرد. تلفات کرونا معرفی شده و مدلهای نظری تبیین میشود. در نهایت مطالعاتی که در این حوزه در برخی کشورها از جمله سوئد ارائه می گردد و در انتها پیشنهاداتی در راستای انجام مطالعات جدید و بومی مطرح میشود.
مقدمه:
با افزایش میزان مصرف انرژی در جهان و روبه اتمام رسیدن منابع انرژی فسیلی، توجه ویژهای به مقوله تلفات انرژی شده است.
چنانکه میدانیم پس از تولید انرژی الکتریکی در نیروگاههای متمرکز، بهکمک خطوط انتقال این انرژی به مناطق مصرف منتقل میشود و از طریق پستها و خطوط فوق توزیع و توزیع در اختیار مصرف کننده ها قرار میگیرد. در کلیه حوزه ها اعم از تولید، انتقال و توزیع، تلفات الکتریکی بخش قابل توجهی از انرژی را به گرمای بی حاصل مبدل میسازد.
قسمت عمده ای از این تلفات مربوط به خطوط ولتاژ بالای انتقال است و در این میان پدیده کرونا بیشترین تأثیر را دارد.
برای بهبود وضعیت و کاهش این تلفات، شناخت این پدیده، روش های ارزیابی تلفات ناشی از آن و ارائه مدل ضروری است.
هدف اصلی ما در این پروژه آشنایی با انواع تخلیه های الکتریکی، پدیده کرونا، تبیین مفهوم تلفات کرونا، نحوه ارزیابی و محاسبه تلفات و در نهایت معرفی مدلهای ارائه شده در این مورد است.
فصل اول: پدیده کرونا در خطوط انتقال
1-1) مقدمه
– زمانی که شدت میدان الکتریکی بر روی سطح هادی از قدرت شکست هوا تجاوز می کند، تخلیه های کرونا در سطح هادی خط انتقال شکل می گیرند.
– حتی در یک میدان یکنواخت بین دو الکترود مسطح موازی در هوا نیز، بسیاری شرایط گوناگون بر میزان این قدرت شکست تاثیر می گذارند.
– برخی از این شرایط عبارتند از: فشار هوا، جنس الکترود، وجود بخار آب، پدیده فوتو یونیزاسیون و نوع ولتاژ.
– شکست هوا در این ناحیه سبب ایجاد: نور، نویز صوتی، نویز رادیویی، لرزش هادی، اوزون (O3) و محصولات دیگر می گردد و در ضمن اتلاف انرژی به وجود می آورد که بایستی توسط نیروگاه تأمین شود.
2-1) مکانیسم کرونا
– فرآیندهای تخلیه گازی
تخلیه های الکتریکی معمولا به واسطه میدان الکتریکی که به الکترون های آزاد درون گاز شتاب می دهد، آغاز می شوند. هنگامی که این الکترون ها انرژی کافی به دست آوردند، می توانند از طریق برخورد با اتم ها، یون ها و الکترون های جدید تولید کنند. (یونیزاسیون ضربه)
برچسب ها : سمینار برق مدلهای پدیده کرونا در خطوط انتقال و نحوه ارزیابی تلفات آن در شبکههای واقعی , سمینار برق مدلهای پدیده کرونا در خطوط انتقال و نحوه ارزیابی تلفات آن در شبکههای واقعی
سمینار برق مطالعه و بررسی روکش های مختلف جهت یابی رادیویی
سمینار برق مطالعه و بررسی روکش های مختلف جهت یابی رادیویی
این سمینار جهت ارائه در مقطع کارشناسی ارشد رشته مهندسی برق-مخابرات طراحی و تدوین گردیده است .
و فقط جهت استفاده ازمنابع اطلاعاتی و بالابردن سطح علمی شما در این سایت ارائه شده است.
برچسب ها : سمینار برق مطالعه و بررسی روکش های مختلف جهت یابی رادیویی , سمینار برق مطالعه و بررسی روکش های مختلف جهت یابی رادیویی
سمینار برق بررسی کنترل فازی تطبیقی
سمینار برق بررسی کنترل فازی تطبیقی
چکیده:
در این سمینار، ابتدا به بررسی اصول اولیه تئوری فازی و اجزا سازنده یک سیستم فازی پرداخته و اصول اولیه طراحی کنترلرهای فازی را مورد بررسی قرار داد هایم و نحوه ترکیب آن با روشهای دیگر کنترلی را تشریح نموده ایم. در ادامه انواع رو شهای کنترل تطبیقی را مورد بررسی قرار داده و اصول اولیه طراحی کنترلرهای تطبیقی را مورد بررسی قرار دادیم. ساختارهای مختلف کنترلرهای تطبیقی را تشریح نموده و انواع کاربرد آ نها را در صنعت بیان نموده ایم و به بررسی انواع روشهای ترکیب اصول تئوری فازی و کنترلرهای تطبیقی پرداخته و انواع کنترلرهای فازی تطبیقی و همچنین تطبیقی فازی را مورد بررسی قرار دادیم.
در ادامه به بررسی عوامل نامعینی در سیستم ها پرداخته و انواع روش های کنترل مود لغزشی را معرفی کرده و روند طراحی این نوع کنترلرها را تشریح نموده و نهایتاً نحوه ترکیب آن با کنترلرهای فازی را بیان کردیم.
مقدمه:
همانگونه که می دانیم، سیستم های فیزیکی پیچیده را یا اصلاً نمی توان مدل نمود و یا مدل سازی نادقیقی از سیستم خواهیم داشت و به عبارتی با مدل های ریاضی نادقیق مواجه خواهیم بود چرا که مجبور به بسیاری ساده سازی ها و ایده آل سازی ها خواهیم بود. این ساده سازی ها ما را منتهی می کند به اینکه یک مقدار عدم دقت، ابهام و نایقینی را در فاز مدلسازی ریاضی بپذیریم و این ها را نمی توان از دنیای مدل سازی سیست مهای فیزیکی حذف نمود، همانگونه که اصطکاک و خاصیت غیرخطی بودن را نم یتوان حذف نمود. در این گونه مواقع تکنیک های آنالیز و کنترل مبتنی بر مدل، چه ساده مثل کنترل کننده های کلاسیک و چه پیچیده مثل کنترل کننده های غیرخطی، جهت کنترل موثر این سیستم ها کارایی ندارند. جهت غلبه بر این مشکل مجبور به استفاده از روش های غیرکلاسیک مانند کنترلرهای فازی هستیم. بدین منظور در این سمینار به بررسی کامل کنترلرهای فازی و همچنین نحوه ترکیب آ نها با روشهای کنترل تطبیقی خواهیم پرداخت. مطالب ارائه شده در این سمینار به شرح زیر می باشند:
در فصل اول، به بررسی تئوری فازی پرداخته و اجزای سازنده یک سیستم فازی را مورد بررسی قرار می دهیم. اصول اولیه طراحی کنترلرهای فازی را مورد بررسی قرار داده و نحوه ترکیب آن با روش های دیگر کنترلی را تشریح خواهیم کرد و نهایتاً پایداری آن را مورد بررسی قرار می دهیم.
در فصل دوم به بررسی انواع روش های تطبیقی خواهیم پرداخت و اصول اولیه طراحی کنترلرهای تطبیقی را مورد بررسی قرار می دهیم. ساختارهای مختلف کنترلرهای تطبیقی را تشریح نموده و انواع کاربرد آن ها را در صنعت بیان خواهیم کرد.
در فصل سوم به تشریح انواع روش های ترکیب تئوری فازی با اصول کنترلرهای تطبیقی پرداخته و روند طراحی کنترلرهای تطبیقی فازی و همچنین فازی تطبیقی را به تفصیل مورد بررسی قرار می دهیم و نمونه هایی از کاربرد این رو شها را در صنعت بیان خواهیم نمود.
نهایتاً در فصل چهارم به بررسی کنترلرهای مود لغزشی پرداخته و سطوح لغزشی را مورد بررسی قرار داده و نحوه ترکیب آن با کنترلرهای فازی را مورد بررسی قرار می دهیم.
فصل اول: تئوری فازی
1-1- مقدمه
واژه فازی در فرهنگ لغت آکسفورد به معنای “مبهم، گنگ، نادقیق، گیج، مغشوش، درهم و نامشخص” تعریف شده است. تئوری فازی به وسیله پروفسور لطفی زاده در سال 1965 در مقاله ای به نام “مجموعه های فازی” معرفی گردید. قبل از کار بر روی تئوری فازی، لطفی زاده یک شخص برجسته در تئوری کنترل بود. او مفهوم “حالت” که اساس تئوری کنترل مدرن را شکل می دهد، توسعه داد. در اوائل دهه 60 او فکر کرد که تئوری کنترل کلاسیک بیش از حد بر روی دقت تاکید داشته و از این رو با سیستم های پیچیده نمی تواند کار کند. در سال 1962 چیزی را بدین مضمون برای سیستم های بیولوژیک نوشت: “ما اساساً به نوع جدیدی ریاضیات نیازمندیم، ریاضیات مقادیر مبهم یا فازی که توسط توزیع های احتمالات قابل توصیف نیستند.” پس از آن وی ایده اش را در مقاله “مجموعه های فازی” تجسم بخشید.
منطق فازی معتقد است که ابهام در ماهیت علم است. برخلاف دیگران که معتقدند که باید تقریب ها را دقیق تر کرد تا بهره وری افزایش یابد. لطفی زاده معتقد است که باید به دنبال ساختن مدل هایی بود که ابهام را به عنوان بخشی از سیستم مدل کند.
منطق فازی یک سیستم منطقی بی نهایت مقداره است با هدف فراهم آوردن مدلی برای استدلالات و استنتاجات انسانی که بیشتر دارای طبیعتی تقریبی اند تا دقیق و به عبارتی شاخه ای از ریاضیات است که به کامپیوترهای متداول این امکان را می دهد تا بتوان انواع مختلف ابهامات و عدم قطعیت هایی که در زندگی روزمره با آن مواجهیم را شبیه سازی کند.
همانگونه که می دانیم هر چیزی در دنیای واقعی را نمی توان در طبقات بسیار جدا از هم، آن گونه که تئوری مجموعه های کلاسیک قرار می دهد، تقسیم نمود، به همین دلیل در دنیای فازی مرزهای اختصاص یافته به اعداد، گسترده تر گردیده اند، به گونه ای که مثلاً عدد 0/5 را می توان تا حدی عدد صفر محسوب کرد (در حالی که در دنیای کلاسیک فقط عدد صفر می تواند معرف صفر بودن باشد) و این کمک می کند که بتوانیم بهتر خطای اندازه گیری (عدم قطعیت حاصل از اندازه گیری) را مدل کنیم و سیستم تصمیم گیر مثل کنترل کننده، بتواند هموارتر رفتار نماید و به خطای مشاهده کمتر حساس شود. لازم به ذکر است که این تئوری، دارای روش های محاسباتی خاص خود می باشد که تا حدی با محاسبات معمول دنیای کلاسیک متفاوت بوده که در متن حاضر به اختصار مورد بررسی قرار خواهد گرفت.
برچسب ها : سمینار برق بررسی کنترل فازی تطبیقی , سمینار برق بررسی کنترل فازی تطبیقی
دسته: سمینار برق
بازدید: 2 بار
فرمت فایل: pdf
حجم فایل: 2927 کیلوبایت
تعداد صفحات فایل: 62
سمینار برق کنترل کننده پیش بین خطی بر پایه مدل MPC
سمینار برق کنترل کننده پیش بین خطی بر پایه مدل MPC
چکیده:
در این تحقیق کنترل کننده پیش بین بر پایه مدل Model Based Predictive Control به منظور کنترل سیستم های خطی مورد بررسی قرار گرفته است.Model Based Predictive Control از دسته روش های کنترل پیشرفته ای می باشد که امروزه به طور گسترده در صنایع فرایند مورد استفاده قرار گرفته است. اگرچه این روش تقریبا برای هر نوع مساله ای مناسب می باشد، اما توانایی این روش در برخورد با مسائل زیر آشکارتر می گردد: مسائلی که در آن تعداد ورودی های کنترل و حالت های سیستم زیاد است. مسائلی که در آن ورودی های کنترل و حالت های سیستم دارای قیودی هستند. مسائلی که در آن اهداف کنترل تغییر پیدا می کند و یا تجهیزات کنترل مانند سنسورها و محرک ها بنابه دلایلی از بین می روند. مسائلی که در آن با سیستم های تاخیردار مواجه ایم.اساس این روش بر حل یک مساله کنترل بهینه در هر فاصله نمونه برداری استوار است. بدین شکل که ابتدا با استفاده از یک مدل پیش بینی، خروجیهای آینده را برای یک افق محدود پیش بینی می کند و با استفاده از کمینه سازی یک تابع معیار، ورودی های آینده را بر روی افق پیش بینی بدست می آورد و تنها عنصر اول از این سری را به عنوان ورودی به سیستم اعمال می کند.
مقدمه:
دو روش توسعه یافته برای محاسبه قانون فیدبک حالت غیر خطی برای سیستم های خطی که دارای قیود حالت و کنترل می باشند عبارتند از: روش کنترل پیش بین و روش برنامه ریزی پویا
در این تحقیق به بررسی روش کنترل پیش بین می پردازیم.MPC یا کنترل پیش بین مدل پایه روشی است برای کنترل سیستم های در حضور قید.MPC یا روش کنترل افق کاهنده امروزه بصورت روشی استاندارد در حل مسائل کنترل چند متغیره در حضور قیود پیچیده در آمده است. این روش ابتدا با استفاده از یک مدل از سیستم رفتار آینده آن را پیش بینی کرده و سپس یک شاخص عملکرد مربعی را بر پایه پیش بینی انجام شده کمینه می نماید. اگر بخواهیم موقعیت یا حرکت یک اتومبیل را کنترل کنیم MPC با نگاه کردن به جاده از شیشه جلوی اتومبیل معادل است در حالیکه کنترل کلاسیک تنها اجازه نگاه کردن به شیشه عقب اتومبیل را می دهد و درواقع فرامین کنترلی براساس خطاهای گذشته صادر می گردد. مزیت های استفاده از کنترل پیش بین: در زیر مزایای استفاده از MPC و دلایل موفقیت آن در صنعت به طور خلاصه عنوان شده است.
MPC در مسائله کنترل سیستم ها چند متغیره قابل بکارگیری است.
MPC اجازه کار در نزدیکی قیود را می دهد یعنی کنرلرهای بر پایه MPC را می توان نزدیک به مرزهای قیود برای ایجاد عملکرد بهتر نسبت به سایر روش های قدیمی بکار برد.
MPC در سیستم های غیر مینیمم فاز و پروسه های ناپایدار قابل بکارگیری است.
MPC روشی ساده را برای محاسبه پارامترها ارائه می دهد.
MPC در تغییرات ساختاری سیستم قابل بکارگیری می باشد.
اصول کلی حاکم بر کنترل پیش بین:
همانطور که قبلاً ذکر شد کلیه روش های کنترل پیش بین دارای اجزای مشترکی بشکل زیر می باشند:
مدل پیش بینی برای پیش بینی خروجیهای آینده سیستم
تابع معیار که با مینیمم سازی آن روی افق محدود، ورودی های کنترل بهینه آینده را می توان محاسبه کرد.
برچسب ها : سمینار برق کنترل کننده پیش بین خطی بر پایه مدل MPC , سمینار برق کنترل کننده پیش بین خطی بر پایه مدل
سمینار برق نقش تولید پراکنده و تولید همزمان در صنعت برق تجدیدساختارشده
سمینار برق نقش تولید پراکنده و تولید همزمان در صنعت برق تجدیدساختارشده
چکیده:
در دو دهه اخیر، تکامل تکنولوژی تولیدات پراکنده (DG)، تجدید ساختار صنعت برق و بوجود آمدن بازارهای آزاد رقابتی، تغییر نگرش اقتصادی پیرامون این تولیدات، ملاحظات زیست محیطی و… موجبات علاقه مجدد تولید پراکنده را فراهم نموده است. هم اکنون در ایران، همزمان با حرکت به سوی تجدید ساختار صنعت برق و برای همسو بودن با این مهم، استفاده از تولید پراکنده و همچنین استفاده از سیستم های تولید همزمان به ویژه در سال های اخیر مطرح گردیده است. از طرفی بکارگیری سیستم های تولید همزمان (CG) باعث افزایش بیشتر راندمان نیروگاه ها و همچنین کاهش سطح آلاینده های منتشره از آن ها گشته است.
ورود تولیدات پراکنده و سیستم های تولید همزمان به بازارهای برق، ملاحظات بسیار مهمی را بوجود آورده است که بررسی آن ها در قالب یک سمینار ضروری می نماید. امید است در این سمینار به بررسی نقش سیستم های تولید پراکنده و تولید همزمان در صنعت برق تجدیدساختاریافته و بازارهای رقابتی کامل پرداخته شود.
براین اساس ابتدا مقدمه ای پیرامون مباحث مورد نظر در این سمینار آورده شده است. در فصل اول مروری بر تجدیدساختار صنعت برق و ویژگی های بازارهای تجدید ساختاریافته خواهیم داشت. سپس در فصل دوم انواع تولیدات پراکنده مورد بررسی قرار میگیرد. در فصل سوم، سیستم های تولید همزمان مطالعه می گردد. در فصل چهارم نقش تولید پراکنده و سیستم های تولید همزمان در بازارهای تجدیدساختار یافته مورد بررسی قرار خواهد گرفت. عنوان فصل پنجم، بازار برق ایران و حرکت به سمت تجدیدساختار و گسترش و توسعه سیستمهای تولید همزمان و تولیدات پراکنده میباشد و در فصل آخر نیز به نتیجه گیری مباحث بررسی شده در فصل های قبل، پرداخته میشود.
مقدمه:
تولید پراکنده (DG) در مفهوم کلی آن به هر نوع تولید در محل مصرف اطلاق می گردد . چنین اصطلاحی پیش از آن که انرژی الکتریکی جایگزین صورت های دیگر انرژی مانند حرارت، روشنایی، انرژی مکانیکی و … شود نیز وجود داشت. شاید بتوان ساده ترین مصداق تولید پراکنده انرژی را آتشی دانست که انسان های اولیه جهت مصارف حرارتی خود از آن بهره می بردند. با گذشت زمان و پیشرفت تکنولوژی، شبکه های جریان متناوب (AC) و نیز نیروگاه های در مقیاس بزرگ پا به عرصه صنعت نهادند تا بتوان انرژی الکتریکی را در فواصل طولانی انتقال داد،توان خروجی نیروگاه ها را افزایش داد، بارهای مصرفی بزرگ را تأمین نمود و نیز هزینه های سرمایه گذاری و بهره برداری به ازاء هر کیلووات قدرت تولیدی را کاهش داد.
در دو دهه اخیر تکامل تکنولوژی تولیدات پراکنده، تجدید ساختار صنعت برق و بوجود آمدن بازارهای آزاد رقابتی، تغییر نگرش اقتصادی پیرامون این تولیدات، ملاحظات زیست محیطی و … موجبات علاقه مجدد تولید پراکنده را فراهم نموده است. امروزه نیروگاه های تولید پراکنده به نیروگاه هایی با ظرفیت تولیدی کم، از چند کیلووات تا چند مگاوات که برای تولید انرژی الکتریکی مورد نیاز در نزدیکی مصرف کننده مورد استفاده قرار می گیرند اطلاق می شود .این نیروگاه ها شامل نیروگاه های بادی، خورشیدی، پیل سوختی، موتورهای رفت و برگشتی گازسوز و دیزلی، توربین های صنعتی، میکروتوربین ها و … می باشند.
عوامل بسیاری را می توان برای رویکرد مجدد صنعت برق به تولید پراکنده نام برد. IEA(2002) پنج عامل اساسی را در رابطه با رویکرد مجدد به تولید پراکنده بر می شمرد که عبارتند از: پیشرفت تکنولوژی های تولید پراکنده، محدودیت در ساختن خطوط انتقال جدید، افزایش تقاضای مصرف کنندگان جهت تهیه برق با قابلیت اطمینان بالا، آزادسازی (تجدید ساختار) بازار برق و نگرانی های زیست محیطی. برخی نیز بر این اعتقادند که پنج عامل فوق را می توان در دو فاکتور مهم و اساسی تجدید ساختار برق و مسائل محیط زیست خلاصه نمود.
فن آوری های امروزه تولید پراکنده از نظر بهره برداری، ظرفیت و قابلیت توسعه آتی قابل انعطاف هستند. لذا امروزه تولید پراکنده امکان ارائه خدمات مناسب تأمین و نگهداری برق را داراست .به عنوان مثال استفاده از تولید پراکنده امکان واکنشی انعطاف پذیر به تغییرات قیمت را داده و می تواند به عنوان مانعی در برابر نوسانات قیمت بازار برق عمل کند. این امر را می توان جزء اصلی ترین موارد استفاده از تولید پراکنده در ایالات متحده آمریکا دانست.حال آن که در اروپا تقاضای بازار برای استفاده از تولیدات پراکنده به عنوان مقدمه ای جهت استفاده از منابع تجدیدپذیر انرژی برای تولید انرژی پاک و نیز افزایش راندمان تولید می باشد. از دیگر دلایل مهم استفاده تولید پراکنده افزایش قابلیت اطمینان است . زیرا با تجدید ساختار بازار و نیز گسترش بازار رقابتی، مشتریان نسبت به قابلیت اطمینان تأمین برق مورد نیاز خود هشیارتر شده اند. لذا تولید کنندگان نیز به دنبال راه حل هایی برای افزایش قابلیت اطمینان برق تولیدی خود می باشند.
از جمله مهم ترین پیامدهای تجدیدساختار صنعت برق، خصوصی سازی صنایع مرتبط با آن صنعت می باشد.بالا بودن قیمت نیروگاه های بزرگ و نیز زیادبودن هزینه های سرمایه گذاری برای احداث این نوع نیروگاه ها، مانعی اساسی در تحقق اهداف خصوصی سازی محسوب می گردد . استفاده از نیروگاه های تولید پراکنده هزینه سرمایه گذاری در تولید انرژی الکتریکی را کاهش می دهد و نیز باعث افزایش سرمایه گذاری در این امر می شود. علاوه بر موارد فوق، بحران نفت در سال 1973 و همچنین بالا رفتن قیمت نفت در سال های اخیر موجب شده است تا بسیاری از کشورها که در صنایع خود، وابسته به سوخت های فسیلی بودند، به دنبال یافتن جایگزین های مناسب برای این گونه سوخت ها باشند. همچنین با افزایش آگاهی عمومی از مسائل زیست محیطی و تغییر نگرش در سیاست های تأمین انرژی و در اولویت قرارگرفتن مسائل محیط زیست، یافتن جایگز ین های مناسب و پاک برای سوخت های فسیلی ضرورت یافت. مطالعات نشان می دهد انرژی های تجدیدپذیر مانند انرژی خورشیدی، بادی، جزر و مد، زمین گرمایی، بایوماس و … از نظر زیست محیطی فاقد آلودگی می باشند و جایگزین مطلوبی برای سوخت های فسیلی هستند.
برچسب ها : سمینار برق نقش تولید پراکنده و تولید همزمان در صنعت برق تجدیدساختارشده , سمینار برق نقش تولید پراکنده و تولید همزمان در صنعت برق تجدیدساختارشده